杰森·基拉尔恍然大悟,给出了自己的理解,“对平台来说,用户有两种偏好。一种是想达到的偏好,一种是实际观察到的偏好。用户的选择,未必就是他真实的自己,可能是他对自己的错误认知。个性化推荐,就是根据观察到的用户行为,去给出最符合他真实偏好的电影。这跟高票房、低票房无关,跟高评分、低评分无关,每一个用户其实都有基于个性化的烂片属性。”
周不器笑道:“对,美国的橄榄球再精彩,我也不看。我们国足踢得再差,只要有时间,我也不会一场不落。这就是个性化,跟好不好无关,跟个人的实际偏好有关。”
杰森·基拉尔深吸了一口凉气,没想到周大老板和奈飞已经在流媒体的理论层次上达到了这么高的水准,接着问道:“应用了吗?”
这就轮到曲涵涵来回答了,中规中矩地给出解释,“已经试用4个月了,算法还在调整,初步的成绩比较好。”
杰森·基拉尔追问:“有多好?”
曲涵涵笑道:“很多用户都有评论,说是他们在奈飞上看到了他们过去从来就没听说过却很喜欢看的电影,很惊喜。”
“嘶!”
杰森·基拉尔就心惊得说不出话来了。
是啊!
用户们能不惊喜吗?
传统的推荐模式,是根据影评人的口碑,电影票房和电视收视率来推荐,只推荐“好片”。奈飞的这种个性化推荐就不一样了,可能把一些过去完全被人们忽视的“烂片”给推荐出去。
内容未完,下一页继续阅读